首页 > 新闻公告 > CEM研究国际动态 CEM研究国际动态
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

Nature Communications 7, Article number: 11886 doi:10.1038/ncomms11886
Received 01 December 2015 Accepted 09 May 2016 Published 14 June 2016

http://www.nature.com/ncomms/2016/160614/ncomms11886/full/ncomms11886.html

发布日期:2016/06/20 发布者: 点击数: