首页 > 新闻公告 > CEM研究国际动态 CEM研究国际动态
Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I–III–VI2semiconductors to realize the first large-area quantum dot–luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.



Nature Nanotechnology (2015) doi:10.1038/nnano.2015.178
Received 20 January 2014 Accepted 16 July 2015 Published online 24 August 2015

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2015.178.html

http://paper.sciencenet.cn/htmlpaper/201598148455237294.shtm

发布日期:2015/09/08 发布者: 点击数: