首页 > 新闻公告 > CEM研究国际动态 CEM研究国际动态
新型扁平的石墨烯纳米带

石墨烯是一种由单层碳原子组成的材料,拥有众多极为特殊的物理特性,室温下电子在石墨烯材料中的移动速度是硅导体的200倍。此前的研究已经证实,碳纳米管(由石墨烯卷曲而成的圆筒结构)具有极好的导电性能,然而结构较为复杂的碳纳米管难以安装在电子芯片内部。因此,科研人员将研究转向石墨烯的另外一种形式——扁平的石墨烯纳米带。

该研究团队设计出一套巧妙的办法,成功制备出宽度仅为40纳米的高质量石墨烯纳米带。此前的石墨烯纳米带边缘较为粗糙,这严重影响了其导电性,是阻碍石墨烯纳米带电子传输的一大障碍。为解决这一问题,研究人员在碳化硅晶体上切割出边缘整齐的带状凹槽,并直接在这些凹槽上制备石墨烯纳米带。在测试新制备纳米带导电性的实验中,常温下的电子迁移率超过了100万cm2/Vs(每单位电场下电子的迁移速率),是应用于计算机内存的硅半导体的1000倍(通常低于1700cm2/Vs)。

此外,新的制备方法适用于大批量规模生产,并能够保证石墨烯纳米带的结构质量,这使得石墨烯在电子领域的广泛应用成为可能。

石墨烯令它的发现者获得了诺贝尔奖,但它能够给整个人类带来什么?这一问题,曾经是许多学术价值卓越但实际应用困难的新材料走不出的悖论。而本次三国科学家的研究,尤其是他们独创且具量产能力的制备工艺,有望帮助石墨烯打破这个怪圈。一旦该项成果成功付诸实践,则意味着这种最初用胶带制备出的新材料,将能够帮助人们摆脱日益走向尽头的摩尔定律的束缚,跃入到一个运算能力更强、传输速率更高的IT新纪元。(转自科技日报)
    Graphene nanoribbons will be essential components in future graphene nanoelectronics1. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene8 by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length—the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also—because they can be readily produced in thousands—in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.(Nature, 2014, doi:10.1038/nature12952)



   

发布日期:2014/02/10 发布者:网站管理员 点击数: