Control of the optical properties of matter on ultrashort timescales is of both fundamental interest and central importance for applications in photonics. It is desirable to achieve pronounced changes over a broad spectral range using the least possible amount of material. Here, we demonstrate a dramatic change over a spectral range of hundreds of meV on the femtosecond timescale in the optical response of atomically thin two-dimensional crystals of the transition-metal dichalcogenide WS2 following excitation by intense optical pump pulses. Our findings reveal the role of extremely strong Coulomb interactions. At the direct gap, we observe a Mott transition from excitonic states to free carriers, accompanied by a giant bandgap renormalization of approximately 500 meV and the development of population inversion.
Nature Photonics 9, 466–470 (2015) doi:10.1038/nphoton.2015.104