首页>新闻公告>CEM研究国际动态
Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering

The ligand shell (LS) determines a number of nanoparticles’ properties. Nanoparticles’ cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS’ morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles’ core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles’ LS.

Nature Communicationsvolume 9, Article number: 1343 (2018)
doi:10.1038/s41467-018-03699-7

https://www.nature.com/articles/s41467-018-03699-7

发布日期:2018/4/10 发布者:网站管理员 点击数:64【打印