磁场诱导界面共组装策略合成磁性介孔二氧化硅纳米链

纳米磁响应性多孔材料由于其独特的磁学特性(可被磁化、交变磁场下产热等)和多孔结构,可被用于分离富集、磁靶向药物定点释放、固定酶/纳米催化剂等,在生物医学、催化等领域有着重要的应用价值。除了具有传统的零维磁性纳米材料的特征以外,一维磁性纳米材料(纳米链、纳米线、纳米棒等)还具有可控的长径比、各向异性以及在动态磁场中产生局域物理剪切力等效应,近年来成为纳米材料领域的一个重要研究对象。目前,一维磁性纳米材料的合成方法主要包括水热/溶剂热法、磁偶极组装法、静电纺丝法等,但是这些方法得到的一维纳米材料往往不具备可控的稳定结构和表面结构功能,且比表面积较低,识别、负载客体分子能力低,制约了其在应用潜力。

近日,iChEM研究人员、复旦大学化学系邓勇辉教授课题组报道了一种基于磁场诱导界面共组装的方法,首次合成了一种由磁性纳米内核和介孔二氧化硅外壳组成的核壳结构一维纳米链材料(Fe3O4@nSiO2@mSiO2 nanochain,Magn-MSNCs)。其合成过程包括两个步骤 (如图1):第一步,具有稳定刚性结构Fe3O4@nSiO2纳米链的可控合成:通过静磁场的诱导取向,实现零维磁性Fe3O4纳米颗粒的定向组装和二氧化硅在其界面的生长包覆,得到长度可控的一维纳米链;第二步,介孔二氧化硅外层的可控生长:在正己烷存在下,通过表面活性剂十六烷基三甲基溴化铵(CTAB)与水解后的正硅酸四乙酯(TEOS)在溶剂中的界面共组装,在Fe3O4@nSiO2纳米链上进一步包覆上一层孔径可调的介孔二氧化硅,得到具有双壳层结构的Fe3O4@nSiO2@mSiO2磁性介孔二氧化硅纳米链(图1)。该材料具有较高的比表面积(317 m2/g)、较大的垂直取向介孔(7.3 nm)和良好的磁响应性能(饱和磁化强为度34.9 emu/g)。在动态磁场中,该纳米链能随着磁场方向的变化产生响应,显示出快速转动现象并产生剪切力。研究团队充分利用该材料外层中较大孔径的介孔孔道,实现了金纳米颗粒的高效负载,并用于硝基苯酚的催化加氢反应,磁性纳米链在反应液中随外加磁场旋转,加速了催化反应的进行,显示了良好的催化效果。该材料同时起到催化剂载体和磁性搅拌子的双重作用,利用其磁分离特性,负载的贵金属催化剂可以方便磁分离回收。此外,课题组与第二军医大学长海医院合作,发现这种磁性介孔二氧化硅纳米链材料作为药物(唑来膦酸盐,一种抑制破骨细胞分化的常用药物)载体能够被骨髓源性巨噬细胞(BMMs)吞噬进入细胞体内。在外加动态磁场下,磁性纳米链在细胞内限域微环境下产生较强的物理剪切力,改变细胞内的功能状态,同时其负载的药物被有效释放在细胞内,从而实现了抑制破骨细胞的分化作用。这种独特的一维磁性纳米多孔材料有望在微型催化、微型纳米反应器、微纳药物释放等诸多领域得到重要应用。相关研究成果以“A Magnetic-Field Guided Interfacial Co-Assembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis”为题,发表在Advanced Materials (Adv. Mater. 2018, 1707515 DOI: 10.1002/adma.201707515) 上,第一作者为复旦大学化学系硕士研究生万里,通讯作者为复旦大学邓勇辉教授和第二军医大学长海医院苏佳灿教授。


图1. 材料合成步骤示意图和电镜图

总之, 该研究介绍了一种磁场诱导界面共组装合成方法,合成了具有核-壳结构、垂直发散介孔孔道的磁性二氧化硅纳米链材料Fe3O4@nSiO2@mSiO2,该材料特有的介孔壳层十分有利于负载药物、贵金属和生物酶等,而其磁响应性能和一维纳米材料独特的各向异性使其在动态磁场在反应体系中发生转动,产生剪切作用,加速体系反应的进行,从而同时起到了载体和磁性搅拌子的双重作用。另一方面,磁性材料催化剂通过外加磁场可实现高效分离与回收。因此,该材料有望在催化、生物医药等领域得到广泛应用。该工作得到了复旦大学化学系、聚合物分子工程国家重点实验室、2011能源材料化学协同创新中心(iChEM)以及国家万人计划青年拔尖人才支持和国家自然科学基金优秀青年基金的大力支持。

论文链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201707515


发布日期:2018/5/14 发布者:网站管理员 点击数:296